Experimental study of the convection in a rotating tangent cylinder

Author:

Aujogue KéligORCID,Pothérat Alban,Sreenivasan BinodORCID,Debray François

Abstract

This paper experimentally investigates the convection in a rapidly rotating tangent cylinder (TC), for Ekman numbers down to $E=3.36\times 10^{-6}$. The apparatus consists of a hemispherical fluid vessel heated in its centre by a protruding heating element of cylindrical shape. The resulting convection that develops above the heater, i.e. within the TC, is shown to set in for critical Rayleigh numbers and wavenumbers respectively scaling as $Ra_{c}\sim E^{-4/3}$ and $a_{c}\sim E^{-1/3}$ with the Ekman number $E$. Although exhibiting the same exponents as for plane rotating convection, these laws reflect much larger convective plumes at onset. The structure and dynamics of supercritical plumes are in fact closer to those found in solid rotating cylinders heated from below, suggesting that the confinement within the TC induced by the Taylor–Proudman constraint influences convection in a similar way as solid walls would do. There is a further similarity in that the critical modes in the TC all exhibit a slow retrograde precession at onset. In supercritical regimes, the precession evolves into a thermal wind with a complex structure featuring retrograde rotation at high latitude and either prograde or retrograde rotation at low latitude (close to the heater), depending on the criticality and the Ekman number. The intensity of the thermal wind measured by the Rossby number $Ro$ scales as $Ro\simeq 5.33(Ra_{q}^{\ast })^{0.51}$ with the Rayleigh number based on the heat flux $Ra_{q}^{\ast }\in [10^{-9},10^{-6}]$. This scaling is in agreement with heuristic predictions and previous experiments where the thermal wind is determined by the azimuthal curl of the balance between the Coriolis force and buoyancy. Within the range $Ra\in [2\times 10^{7},10^{9}]$ which we explored, we also observe a transition in the heat transfer through the TC from a diffusivity-free regime where $Nu\simeq 0.38E^{2}Ra^{1.58}$ to a rotation-independent regime where $Nu\simeq 0.2Ra^{0.33}$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3