Abstract
We construct a model to investigate the interfacial stability of film boiling, and discover that instability of very thin vapour films and subsequent large interface superheating is only possible if thermocapillary instabilities are present. The model concerns horizontal saturated film boiling, and includes novel features such as non-equilibrium evaporation based on kinetic theory, thermocapillary and vapour thrust stresses and van der Waals interactions. From linear stability analysis applied to this model, we are led to suggest that vapour film collapse depends on a balance between thermocapillary instabilities and vapour thrust stabilization. This yields a purely theoretical prediction of the Leidenfrost temperature. Given that the evaporation coefficient is in the range 0.7–1.0, this model is consistent with the average Leidenfrost temperature of every fluid for which data could be found. With an evaporation coefficient of 0.85, the model can predict the Leidenfrost point within 10 % error for every fluid, including cryogens and liquid metals where existing models and correlations fail.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献