Author:
Huang Shuibo,Zhang Zhitao,Liu Zhisu
Abstract
In this paper, by the moving spheres method, Caffarelli-Silvestre extension formula and blow-up analysis, we study the local behaviour of nonnegative solutions to fractional elliptic equations
\begin{align*} (-\Delta)^{\alpha} u =f(u),~~ x\in \Omega\backslash \Gamma, \end{align*}
where
$0<\alpha <1$
,
$\Omega = \mathbb {R}^{N}$
or
$\Omega$
is a smooth bounded domain,
$\Gamma$
is a singular subset of
$\Omega$
with fractional capacity zero,
$f(t)$
is locally bounded and positive for
$t\in [0,\,\infty )$
, and
$f(t)/t^{({N+2\alpha })/({N-2\alpha })}$
is nonincreasing in
$t$
for large
$t$
, rather than for every
$t>0$
. Our main result is that the solutions satisfy the estimate
\begin{align*} f(u(x))/ u(x)\leq C d(x,\Gamma)^{{-}2\alpha}. \end{align*}
This estimate is new even for
$\Gamma =\{0\}$
. As applications, we derive the spherical Harnack inequality, asymptotic symmetry, cylindrical symmetry of the solutions.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献