Controlled release urea increases soybean yield without compromising symbiotic nitrogen fixation

Author:

Pierozan Junior ClovisORCID,Favarin José LaércioORCID,Baptistella João Leonardo CorteORCID,de Almeida Rodrigo Estevam MunhozORCID,Maciel de Oliveira SilasORCID,Lago Bruno CoccoORCID,Tezotto TiagoORCID

Abstract

Summary In Brazil, high-yield soybean [Glycine Max (L). Merrill] – corn (Zea mays L.) double cropping system might be nitrogen (N)-limited and additional N fertilization can be beneficial. Early application of N in soybean reduces the symbiotic N fixation (SNF) efficiency and/or establishment. One alternative to avoid SNF impairment is to apply N between the beginning pod (R3) and seed-fill (R5) stages through the use of controlled release fertilizers. In this study, N was applied at 50 kg ha−1 as common urea (CU) or controlled release urea (CRU) with different lag periods until N release starts (30 days, 60 days, or 1:1 mix of both lag times) in a randomized complete blocks design with six treatments and four replicates under tropical and subtropical conditions. CU was applied after soybean emergence (VE) or at the beginning pod (R3), and CRU only at VE. Using urea labeled with 15N isotope, we analyzed the N source used by soybean (fertilizer, soil, or SNF) and SNF parameters. On average, CRU – 30 days, CRU – 1:1 mix (30 + 60 days) and CU applied at the R3 stage increased grain yield by 9.2% (354 kg ha−1) compared to the control. N derived from all fertilizer treatment were almost 35 kg N ha−1, a high N recovery efficiency of 68%. The SNF was not impaired by CU and CRU and accounted for 71% (220 kg N ha−1) of total N uptake. In the conditions of the experiments, fertilization of 50 kg N ha−1 as CRU was shown to be effective to supply N in late soybean demand (R3 stage), increasing yield without damaging the SNF process in high-yield environments.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

Reference51 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3