UPTAKE AND UTILIZATION OF 5-SPLIT NITROGEN TOPDRESSING IN AN IMPROVED AND A TRADITIONAL RICE CULTIVAR IN THE BHUTAN HIGHLANDS

Author:

GHALEY BHIM BAHADUR

Abstract

SUMMARYThe uptake of urea fertilizer (NDFF), applied with 150 kg nitrogen (N) ha−1, topdressed in five splits of 30 kg N ha−1 (30 N) each at 7, 26, 45, 70 and 83 days after transplanting (DAT) of rice (Oryza sativa L.), was investigated in an improved (Khangma Maap, KM) and a traditional (Janam, JN) cultivar in Bhutan highlands, using enriched 15N stable isotope. The treatments were arranged in a split–split plot design, with N fertilizer levels as main plots, cultivars as subplots and topdressing treatments as sub-subplots, with all the sub-subplots receiving the same dose except different timing of one split of enriched 15N to determine partial N fertilize use efficiency at each split dose. Although cultivar differences were not recorded in soil N accumulation and in total dry matter N, KM produced 21% higher grain yields compared to JN due to higher grain harvest index and partial factor productivity of N. Irrespective of the cultivars, topdressing timing had significant effects on NDFF, with highest mean N recovery (REN) of 29% of applied 30 N at 45 DAT during active tillering stage, resulting in mean NDFF total (grain + straw) uptake of 8.71 kg N ha−1 compared to least effective topdressing timing at 7 DAT with mean REN of 12% and NDFF total of 3.51 kg N ha−1. In similarity to topdressing at 45 DAT, topdressing at 70 DAT (panicle initiation stage) was equally effective with mean REN of 27% across the cultivars. Hence, fertilizer N topdressing recommendations that combine use of improved cultivars with N applications timed to coincide with maximum crop demand at 45 and 70 DAT, could enhance N fertilizer use efficiency for increased rice yields as well as reduce N losses downstream, which can cause adverse off-site environmental effects.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3