THE USE OF AMMI MODEL FOR INTERPRETING GENOTYPE × ENVIRONMENT INTERACTION IN DURUM WHEAT

Author:

MOHAMMADI REZA,ARMION MOHAMMAD,ZADHASAN ESMAEIL,AHMADI MALEK MASOUD,AMRI AHMED

Abstract

SUMMARYDurum wheat (Triticum durum) is one of the most important cereal crops in the Mediterranean region; however, its cultivation suffers from low yield due to environmental constrains. The main objectives of this study were to (i) assess genotype × environment (GE) interaction for grain yield in rainfed durum wheat and to (ii) analyse the relationships of GE interaction with genotypic/meteorological variables by the additive main effects and multiplicative interaction (AMMI) model. Grain yield and some related traits were evaluated in 25 durum wheat genotypes (landrace, breeding line, old and new varieties) in 12 rainfed environments differing in winter air temperature. The AMMI analysis of variance indicated that the environment had highest contribution (84.3% of total variation) to the variation in grain yield. The first interaction principal component axis (IPCA1) explained 77.5% of GE interaction sum of squares (SS), and its effect was 5.5 times greater than the genotype effect, indicating that the IPCA1 contributed remarkably to the total GE interaction. Large GE interaction for grain yield was detected, indicating specific adaptation of genotypes. While the postdictive success method indicated AMMI-4 as the best model, the predictive success one suggested AMMI-1. The AMMI biplot analysis confirmed a rank change interaction among the locations, indicating the presence of strong and unpredictable rank-change location-by-year interactions for locations. In contrast to landraces and old varieties, the breeding lines with high yield performance had high phenotypic plasticity under varying environmental conditions. Results indicated that the GE interaction was associated with the interaction of heading date, plant height, rainfall, air temperature and freezing days.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3