ROOT CHARACTERISTICS IN COWPEA RELATED TO DROUGHT TOLERANCE AT THE SEEDLING STAGE

Author:

MATSUI T.,SINGH B. B.

Abstract

Cowpea (Vigna unguiculata) has relatively higher drought tolerance than other legume crops. It is widely grown in semi-arid regions, particularly in West Africa. One objective of the present study was to determine the effects of soil moisture stress on the length, dry matter and distribution of the roots of two cowpea varieties with different drought tolerances. Another objective was to evaluate the pin-board root-box as a method for identifying the role of root characteristics in drought tolerance. Two cowpea varieties, IT96D-604 (drought tolerant) and TVu7778 (drought susceptible), were used in this study. There were three watering treatments, T1 (well-watered), T2 (mild water stress) and T3 (severe water stress). Between varieties, there were no significant differences in shoot and root characteristics except for leaf area in T1. Under T2, the shoot:root ratio (S:R ratio) of IT96D-604 was significantly decreased compared with that under T1 as a result of the increase in root dry matter and decrease in leaf area without significant differences in total dry matter. In addition, the root dry matter per leaf area, which indicates the capacity to absorb water, of IT96D-604 was significantly higher than that of TVu7778. Under T3, the total dry matter of TVu7778 was about one third of those of the other treatments for the same variety, whereas that of IT96D-604 was more than half. Regarding root distribution, the centres of root dry matter and root length density of both varieties moved downwards significantly under water-stress conditions compared with those of the well-watered condition. This tendency was more pronounced in IT96D-604 than in TVu7778. Drought tolerance in IT96D-604 was associated with the increase in root dry matter per leaf area under mild water-stress conditions, and downward movement of roots (increasing access and use of soil moisture in deep soil layers) under mild and severe water stress conditions. In addition, the root-box method was versatile and can be used for studying root responses to edaphic factors relevant to root growth.

Publisher

Cambridge University Press (CUP)

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3