NORMING SETS AND RELATED REMEZ-TYPE INEQUALITIES

Author:

BRUDNYI A.,YOMDIN Y.

Abstract

The classical Remez inequality [‘Sur une propriété des polynomes de Tchebycheff’,Comm. Inst. Sci. Kharkov13(1936), 9–95] bounds the maximum of the absolute value of a real polynomial$P$of degree$d$on$[-1,1]$through the maximum of its absolute value on any subset$Z\subset [-1,1]$of positive Lebesgue measure. Extensions to several variables and to certain sets of Lebesgue measure zero, massive in a much weaker sense, are available (see, for example, Brudnyi and Ganzburg [‘On an extremal problem for polynomials of$n$variables’,Math. USSR Izv.37(1973), 344–355], Yomdin [‘Remez-type inequality for discrete sets’,Israel. J. Math.186(2011), 45–60], Brudnyi [‘On covering numbers of sublevel sets of analytic functions’,J. Approx. Theory162(2010), 72–93]). Still, given a subset$Z\subset [-1,1]^{n}\subset \mathbb{R}^{n}$, it is not easy to determine whether it is${\mathcal{P}}_{d}(\mathbb{R}^{n})$-norming (here${\mathcal{P}}_{d}(\mathbb{R}^{n})$is the space of real polynomials of degree at most$d$on$\mathbb{R}^{n}$), that is, satisfies a Remez-type inequality:$\sup _{[-1,1]^{n}}|P|\leq C\sup _{Z}|P|$for all$P\in {\mathcal{P}}_{d}(\mathbb{R}^{n})$with$C$independent of$P$. (Although${\mathcal{P}}_{d}(\mathbb{R}^{n})$-norming sets are precisely those not contained in any algebraic hypersurface of degree$d$in$\mathbb{R}^{n}$, there are many apparently unrelated reasons for$Z\subset [-1,1]^{n}$to have this property.) In the present paper we study norming sets and related Remez-type inequalities in a general setting of finite-dimensional linear spaces$V$of continuous functions on$[-1,1]^{n}$, remaining in most of the examples in the classical framework. First, we discuss some sufficient conditions for$Z$to be$V$-norming, partly known, partly new, restricting ourselves to the simplest nontrivial examples. Next, we extend the Turán–Nazarov inequality for exponential polynomials to several variables, and on this basis prove a new fewnomial Remez-type inequality. Finally, we study the family of optimal constants$N_{V}(Z)$in the Remez-type inequalities for$V$, as the function of the set$Z$, showing that it is Lipschitz in the Hausdorff metric.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lower Bounds for High Derivatives of Smooth Functions With Given Zeros;Springer Proceedings in Mathematics & Statistics;2024

2. Smooth rigidity and Remez inequalities via Topology of level sets;Journal of Singularities;2022

3. “Smooth rigidity” and Remez-type inequalities;Analysis and Mathematical Physics;2021-04-02

4. Sharp Remez Inequality;Constructive Approximation;2019-07-01

5. The Sharp Remez-Type Inequality for Even Trigonometric Polynomials on the Period;Topics in Classical and Modern Analysis;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3