Abstract
AbstractLet g1, g2, …, gn be a sequence of mutually independent, normally distributed, random variables with mathematical expectation zero and variance unity. In this work, we obtain the average number of real zeros of the random algebraic equations Σnk=1 Kσ gk(ω)tk = C, where C is a constant independent of t and not necessarily zero. This average is (1/π) log n, when n is large and σ is non-negative.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献