Abstract
AbstractWe prove a priori estimates for the gradient and curvature of spacelike hypersurfaces moving by mean curvature in a Lorentzian manifold. These estimates are obtained under much weaker conditions than have been previously assumed. We also use mean curvature flow in the construction of maximal slices in asymptotically flat spacetimes. An essential tool is a maximum principle for sub-solutions of a parabolic operator on complete Riemannian manifolds with time-dependent metric.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献