Author:
Richardson G. D.,Wolf E. M.
Abstract
AbstractLet (S. U) be a uniform space. This space can be embedded in a complete, uniform lattice called the scale of (S. U). We prove that the scale is compact if and only if S is finite or U = {S × S}. We prove that this statement remains true if compact is replaced by countably compact, totally bounded. Lindelof, second countable, or separable. In the last section of this paper, we investigate the cardinality of the scale and the retracted scale.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The scale of a quasi-uniform space;Acta Mathematica Hungarica;2010-03-17