Abstract
AbstractLet the word “graph” be used in the sense of a countable, connected, simple graph with at least one vertex. We write Qn and Ocn for the graphs associated with the n-cube Qn and the n-octahedron Ocn respectively. In a previous paper (Dekker, 1981) we generalized Qn and Qn to a graph QN and a cube QN, for any nonzero recursive equivalence type N. In the present paper we do the same for Ocn and Ocn. We also examine the nature of the duality between QN and OcN, in case N is an infinite isol. There are c RETs, c denoting the cardinality of the continuum.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability