Abstract
AbstractIt is shown that if every nilpotent 2 × 2 matrix over a ring has nilpotent transpose, then the commutator ideal must be contained in the Jacobson radical, thus generalizing a result of R. S. Gupta, who considered the division ring case. Moreover, if the nilpotent elements form an ideal or if the ring satisfies a polynomial identity, then the above property of the transpose implies that in fact the commutator ideal must be nil.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Associative rings;Journal of Soviet Mathematics;1987-08