On the error estimates for the Rayleigh-Schrödinger series and the Kato-Rellich perturbation series

Author:

Kulkarni Rekha P.,Limaye Balmohan V.

Abstract

AbstractLet λ be a simple eigenvalue of a bounded linear operator T on a Banach space X, and let (Tn) be a resolvent operator approximation of T. For large n, let Sn denote the reduced resolvent associated with Tn and λn, the simple eigenvalue of Tn near λ. It is shown that under the assumption that all the spectral points of T which are nearest to λ belong to the discrete spectrum of T. This is used to find error estimates for the Rayleigh-Schrödinger series for λ and ϕ with initial terms λn and ϕn, where P (respectively, ϕn) is an eigenvector of T (respectively, Tn) corresponding to λ (respectively, λn), and for the Kato-Rellich perturbation series for PPn, where P (respectively, Pn) is the spectral projection for T (respectively, Tn) associated with λ (respectively, λn).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Statistics and Probability

Reference9 articles.

1. [8] Redont P. , Application de la théorie de la perturbation des opérateurs linéaires à l'obtention de bornes d'errurs sur les éléments propres et à leur calcul (Thèse de Docteur-Ingénieur, Université de Grenoble, France, 1979).

2. [7] Nair M. T. , Approximation and localization of eigenelements (Ph.D. Thesis, Indian Institute of Technology, Bombay, 1984).

3. On the accuracy of the Rayleigh-Schrödinger approximations’;Limaye;J. Math. Anal. Appl.

4. Geometric and semigeometric approximation of spectral projections

5. On the steps of convergence of approximate eigenvectors in the Rayleigh-Schr�dinger series

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The projection Kantorovich method for eigenvalue problems;Journal of Computational and Applied Mathematics;1994-05

2. Eigenelements of perturbed operators;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1990-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3