Author:
Kulkarni Rekha P.,Limaye Balmohan V.
Abstract
AbstractLet λ be a simple eigenvalue of a bounded linear operator T on a Banach space X, and let (Tn) be a resolvent operator approximation of T. For large n, let Sn denote the reduced resolvent associated with Tn and λn, the simple eigenvalue of Tn near λ. It is shown that under the assumption that all the spectral points of T which are nearest to λ belong to the discrete spectrum of T. This is used to find error estimates for the Rayleigh-Schrödinger series for λ and ϕ with initial terms λn and ϕn, where P (respectively, ϕn) is an eigenvector of T (respectively, Tn) corresponding to λ (respectively, λn), and for the Kato-Rellich perturbation series for PPn, where P (respectively, Pn) is the spectral projection for T (respectively, Tn) associated with λ (respectively, λn).
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Reference9 articles.
1. [8] Redont P. , Application de la théorie de la perturbation des opérateurs linéaires à l'obtention de bornes d'errurs sur les éléments propres et à leur calcul (Thèse de Docteur-Ingénieur, Université de Grenoble, France, 1979).
2. [7] Nair M. T. , Approximation and localization of eigenelements (Ph.D. Thesis, Indian Institute of Technology, Bombay, 1984).
3. On the accuracy of the Rayleigh-Schrödinger approximations’;Limaye;J. Math. Anal. Appl.
4. Geometric and semigeometric approximation of spectral projections
5. On the steps of convergence of approximate eigenvectors in the Rayleigh-Schr�dinger series
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The projection Kantorovich method for eigenvalue problems;Journal of Computational and Applied Mathematics;1994-05
2. Eigenelements of perturbed operators;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1990-08