Abstract
AbstractLet K be a number field. For f∈K[x], we give an upper bound on the least positive integer T=T(f) such that no quotient of two distinct Tth powers of roots of f is a root of unity. For each ε>0 and each f∈ℚ[x] of degree d≥d(ε) we prove that $\log T(f)\lt (2+\varepsilon )\sqrt {d \log d}$. In the opposite direction, we show that the constant 2 cannot be replaced by a number smaller than 1 . These estimates are useful in the study of degenerate and nondegenerate linear recurrence sequences over a number field K.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. Évaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique
2. An inequality for the arithmetical function g(x);Shah;J. Indian Math. Soc.,1939
3. Deux propriétés décidables des suites récurrentes linéaires
4. Quotients which are roots of unity (solution of problem 6523);Isaacs;Amer. Math. Monthly,1988
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献