On the L1-convergence of Fourier transforms

Author:

Giang Dᾰng Vũ,Móricz Ferenc

Abstract

AbstractWe study cosine and sine Fourier transforms defined by F(t):= (2/π) and (t):= (2/π), where f is L1-integrable over[0, ∞]. We also assume than F are locally absolutely continuous over [0, ∞). In particular, this is the case if both f(x) and xf(x) are (L1-integrable over [0, ∞). Motivated by the inversion formulas, we consider the partial integras Sν (f, x):= and ν(f, x):= , the modified partial integrals uν (f, x):= sν(f, x) - F(ν)(sin νx)/x and ũν(f, x):= ν(f, x) + (ν) (cos νx)/x, where ν > 0. We give necessary and sufficient conditions for(L1 [0, ∞)-convergence of uν (f) and ũν (f) as well as for the L1 [0, X]-convergence of sν (f) and ν(f) to f as ν← ∞, where 0 < X < ∞ is fixed. On the other hand, in certain cases we conclude that sν(f) and ν(f) cannot belong to (L1 [0,∞). Conequently, it makes no sense to speak of their (L1 [0, ∞)-convergence as ν ← ∞.As an intermediate tool, we use the Cesàro means of Fourier transforms. Then we prove Tauberian type results and apply Sidon type inequalities in order to obtain Tauberian conditions of Hardy-Karamata kind.We extend these results to the complex Fourier transform defined by G(t):= , where g is L1- integrable over (−∞, ∞).

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics,Statistics and Probability

Reference6 articles.

1. TauberianL 1-Convergence classes of Fourier series. II

2. L1-convergence of Fourier series

3. Lebesgue integrability of Fourier transforms;Giang;Acta. Sci. Math. (Szeged),1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3