Abstract
AbstractIt is shown that if R is a semiprime ring with 1 satisfying the property that, for each x, y ∈ R, there exists a positive integer n depending on x and y such that (xy)k − xkyk is central for k = n,n+1, n+2, then R is commutative, thus generalizing a result of Kaya.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability