Abstract
We provide a comprehensive study of the function$h=h(q)$defined by$$\begin{eqnarray}h=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{12j-1})(1-q^{12j-11})}{(1-q^{12j-5})(1-q^{12j-7})}\end{eqnarray}$$and show that it has many properties that are analogues of corresponding results for Ramanujan’s function$k=k(q)$defined by$$\begin{eqnarray}k=q\mathop{\prod }_{j=1}^{\infty }\frac{(1-q^{10j-1})(1-q^{10j-2})(1-q^{10j-8})(1-q^{10j-9})}{(1-q^{10j-3})(1-q^{10j-4})(1-q^{10j-6})(1-q^{10j-7})}.\end{eqnarray}$$
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. Factorizations that involve Ramanujan’s function k(q) = r(q)r 2(q 2)
2. Inversion formulas for elliptic functions
3. Modular equations and approximations to 𝜋;Ramanujan;Q. J. Math.,1914
4. On the two-dimensional theta functions of the Borweins
5. Some new identities for a continued fraction of order 12;Mahadeva Naika;South East Asian J. Math. Math. Sci.,2012
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. HYPERGEOMETRIC MODULAR EQUATIONS;Journal of the Australian Mathematical Society;2018-12-27
2. A level 16 analogue of Ramanujan series for 1/π;Journal of Mathematical Analysis and Applications;2017-12
3. Level 12;Ramanujan's Theta Functions;2017
4. Level 8: The Ramanujan–Göllnitz–Gordon Continued Fraction;Ramanujan's Theta Functions;2017
5. Ramanujan’s Series for 1∕π;Ramanujan's Theta Functions;2017