Author:
HOLDEN JOSHUA,ROBINSON MARGARET M.
Abstract
AbstractBrizolis asked for which primes p greater than 3 there exists a pair (g,h) such that h is a fixed point of the discrete exponential map with base g, or equivalently h is a fixed point of the discrete logarithm with base g. Various authors have contributed to the understanding of this problem. In this paper, we use p-adic methods, primarily Hensel’s lemma and p-adic interpolation, to count fixed points, two-cycles, collisions, and solutions to related equations modulo powers of a prime p.
Publisher
Cambridge University Press (CUP)
Reference21 articles.
1. Fixed Points for Discrete Logarithms
2. p-adic Numbers, p-adic Analysis, and Zeta-Functions
3. Some heuristics and results for small cycles of the discrete logarithm
4. [13] Holden J. , ‘Addenda/corrigenda: fixed points and two-cycles of the discrete logarithm’, Rose-Hulman Institute of Technology Mathmatical Sciences Technical Report Series 02-12, 2002, available at http://arxiv.org/abs/0208028.
5. Unsolved Problems in Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献