Quadrics associated with a simplex in n-space

Author:

Konnully Augustine O.

Abstract

It is well known that the projections of a pair of points from the vertices of a triangle onto the opposite sides lie on a conic and that when the points are the centroid and orthocentre of the triangle, this conic is a circle. Analogously the projections of the centroid and orthocentre of a simplex from its vertices onto the opposite (n—1)-dimensional faces, if the simplex is orthocentric, lie on a hypersphere [2, 5]. Further the projections of two points onto the edges of a general simplex from the opposite faces lie on quadric [1]; and when the points are the centroid and orthocentre respectively and the simplex is orthocentric, this quadric is a hypersphere [2]. The results as regards projections onto (n—l)-dimensional and 1-dimensional faces being thus known, it remains to see what results hold in the case of intermediary faces. And in this note we prove that a similar result holds for projections onto intermediary faces as well.

Publisher

Cambridge University Press (CUP)

Reference6 articles.

1. Simplexes Self-Polar for a Simplex

2. Altitudes of a simplex in n-space

3. Orthocentre of a simplex;Augustine;Jour. Lond. Math. Soc.,1964

4. A quadric associated with two points;Asghar;Pakistan Journal of Scientific Research,1951

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3