Abstract
AbstractIn this paper, we deduce new conditions for the existence of ground state solutions for the $p$-Laplacian equation $$\begin{equation*} \left \{ \begin{array}{@{}ll} -\mathrm {div}(|\nabla u|^{p-2}\nabla u)+V(x)|u|^{p-2}u=f(x, u), \quad x\in {\mathbb {R}}^{N},\\[5pt] u\in W^{1, p}({\mathbb {R}}^{N}), \end{array} \right . \end{equation*}$$ which weaken the Ambrosetti–Rabinowitz type condition and the monotonicity condition for the function $t\mapsto f(x, t)/|t|^{p-1}$. In particular, both $tf(x, t)$ and $tf(x, t)-pF(x, t)$ are allowed to be sign-changing in our assumptions.
Publisher
Cambridge University Press (CUP)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献