Author:
CHAN HENG HUAT,WANG LIUQUAN,YANG YIFAN
Abstract
Let $c\unicode[STIX]{x1D719}_{k}(n)$ denote the number of $k$-colored generalized Frobenius partitions of $n$. Recently, new Ramanujan-type congruences associated with $c\unicode[STIX]{x1D719}_{4}(n)$ were discovered. In this article, we discuss two approaches in proving such congruences using the theory of modular forms. Our methods allow us to prove congruences such as $c\unicode[STIX]{x1D719}_{4}(14n+6)\equiv 0\;\text{mod}\;7$ and Seller’s congruence $c\unicode[STIX]{x1D719}_{4}(10n+6)\equiv 0\;\text{mod}\;5$.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献