Author:
Atkinson O. D.,Cook R. J.
Abstract
AbstractThis paper is concerned with non-trivial solvability in p–adic integers, for relatively large primes p, of a pair of additive equations of degree k > 1: where the coefficients a1,…, an, b1,…, bn are rational integers.Our first theorem shows that the above equations have a non-trivial solution in p–adic integers if n > 4k and p > k6. The condition on n is best possible.The later part of the paper obtains further information for the particular case k = 5. specifically we show that when k = 5 the above equations have a non-trivial solution in p–adic integers (a) for all p > 3061 if n ≥ 21; (b) for all p execpt p = 5, 11 if n ≥ 26.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献