Abstract
The isomorphism problem for finite groups of odd order and nilpotency class 2 with cyclic centre will be solved using some results of Brady [1], [2]. Since a finite nilpotent group is the direct product of its Sylow subgroups, we only need to consider finite q-groups where q is a prime. It has been shown in [1] and [2] that a finite q-group of nilpotency class 2 with cyclic centre is a central product either of two-generator subgroups with cyclic centre or of two-generator subgroups with cyclic centre and a cyclic subgroup, and that the q-groups of class 2 on two generators with cyclic centre comprise the following list: , and if q = 2 we have as well .
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献