Abstract
We shall take for granted the basic terminology currently in use in the theory of varieties of groups. Kovács, Newman, Pentony [2] and Levin [3] prove that if m is an integer greater than 2, then the variety Νm of all nilpotent groups of class at most m is generated by its free group Fm-1(Νm) of rank m – 1 but not by its free group Fm–2(Νm) of rank m — 2. That is, the free groups Fk(Nm), 2≦k ≦ m – 2, do not generate Nm. In general little is known of the varieties generated by them. The purpose of the present paper is to record the varieties of the free groups Fk(Nm) of the nilpotent varieties Nm of all nilpotent groups of class at most m for 2 ≦ k ≦ m – 2 and 5 ≦ m ≦ 6. This is done by describing a basis for the laws in these groups, that is a set of laws the fully invariant closure of which is the set of all laws for Fk(Nm). The set of laws, which, together with the appropriate nilpotency law, form a basis for the relevant groups Fk(Nm) are listed below: .
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. [1] Higman Graham , ‘Representations of general linear groups and varieties of p-groups’, Proc. Internat. Conf. Theory of Groups, Austral. Nat. University, Canberra, August, 1965.
2. Generating groups of nilpotent varieties
3. Varieties of Groups
4. Generating groups for nilpotent varieties
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Infinite groups;Journal of Soviet Mathematics;1982