Abstract
Let $u$ be a supertemperature on an open set $E$, and let $v$ be a related temperature on an open subset $D$ of $E$. For example, $v$ could be the greatest thermic minorant of $u$ on $D$, if it exists. Putting $w=u$ on $E\setminus D$ and $w=v$ on $D$, we investigate whether $w$, or its lower semicontinuous smoothing, is a supertemperature on $E$. We also give a representation of the greatest thermic minorant on $E$, if it exists, in terms of PWB solutions on an expanding sequence of open subsets of $E$ with union $E$. In addition, in the case of a nonnegative supertemperature, we prove inequalities that relate reductions to Dirichlet solutions. We also prove that the value of any reduction at a given time depends only on earlier times.
Publisher
Cambridge University Press (CUP)
Reference19 articles.
1. A unifying definition of a subtemperature;Watson;New Zealand J. Math.,2008
2. An extension theorem for supertemperatures;Watson;Ann. Acad. Sci. Fenn. Math.,2008
3. Maggioranti e minoranti delle soluzioni delle equazioni paraboliche
4. Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions;Frostman;Medd. Lunds Univ. Mat. Sem.,1935
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. UNIQUENESS OF EXTENDABLE TEMPERATURES;Bulletin of the Australian Mathematical Society;2020-10-02
2. EXTENDABLE TEMPERATURES;Bulletin of the Australian Mathematical Society;2019-02-27