Abstract
AbstractIn 1903 Mirimanoff conjectured that Cauchy–Mirimanoff polynomials En are irreducible over ℚ for odd prime n. Polynomials Rn, Sn, Tn are introduced, closely related to En. It is proved that Rm, Sm, Tm are irreducible over ℚ for odd m≥3 , and En, Rn, Sn are irreducible over ℚ, for n=2qm, q=1,2,3,4,5 , and m≥1 odd.
Publisher
Cambridge University Press (CUP)
Reference10 articles.
1. On Cauchy–Liouville–Mirimanoff Polynomials
2. Sur l’équation (x+1)l−xl−1=0;Mirimanoff;Nouv. Ann. Math.,1903
3. On a sequence of polynomials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On a family of sparse exponential sums;Mathematische Nachrichten;2024-09-09
2. The Tate-Oort Group Scheme $$\mathbb{TO}_p$$;Proceedings of the Steklov Institute of Mathematics;2019-11