Abstract
AbstractThe Fitting class (of finite, soluble, groups), , is said to be Hall π-closed (where π is a set of primes) if whenever G is a group in and H is a Hall π-subgroup of G, then H belongs to . In this paper, we study the Hall π-closure of products of Fitting classes. Our main result is a characterisation of the Hall π-closedFitting classes of the form (where denotes the so-called smallest normal Fitting class), subject to a restriction connecting π with the characteristic of . We also characterise those Fitting classes (respectively, ) such that (respectively, ) is Hall π-closed for all Fitting classes . In each case, part of the proof uses a concrete group construction. As a bonus, one of these construction also yields a “cancellation result” for certain products of Fitting classes.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Hall-type closure property for certain Fitting classes;Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics;1995-10
2. Bibliography;Finite Soluble Groups;1992-12-31