The Bernstein-von Mises theorem and spectral asymptotics of Bayes estimators for parabolic SPDEs

Author:

Bishwal J. P. N.

Abstract

AbstractThe Bernstein-von Mises theorem, concerning the convergence of suitably normalized and centred posterior density to normal density, is proved for a certain class of linearly parametrized parabolic stochastic partial differential equations (SPDEs) as the number of Fourier coefficients in the expansion of the solution increases to infinity. As a consequence, the Bayes estimators of the drift parameter, for smooth loss functions and priors, are shown to be strongly consistent, asymptotically normal and locally asymptotically minimax (in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum likelihood estimator as the number of Fourier coefficients become large. Unlike in the classical finite dimensional SDEs, here the total observation time and the intensity of noise remain fixed.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference34 articles.

1. On asymptotic problems of parameter estimation in stochastic PDEs: discrete time sampling;Piterbarg;Math. Methods Statist.,1996

2. Maximum likelihood estimators in the equations of physical oceanography

3. Spectral asymptotics of some functionals arising in statistical inference for SPDEs

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Berry–Esseen Inequalities for the Functional Ornstein–Uhlenbeck-Inverse -Gamma Process;Parameter Estimation in Stochastic Volatility Models;2022

2. Fractional Ornstein–Uhlenbeck Processes, Levy–Ornstein–Uhlenbeck Processes, and Fractional Levy– Ornstein–Uhlenbeck Processes;Parameter Estimation in Stochastic Volatility Models;2022

3. Berry–Esseen–Stein–Malliavin Theory for Fractional Ornstein–Uhlenbeck Process;Parameter Estimation in Stochastic Volatility Models;2022

4. Volatility estimation for stochastic PDEs using high-frequency observations;Stochastic Processes and their Applications;2020-05

5. Bayesian estimations for diagonalizable bilinear SPDEs;Stochastic Processes and their Applications;2020-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3