Author:
LO CHING-ON,LOH ANTHONY WAI-KEUNG
Abstract
AbstractLet u and
$\varphi $
be two analytic functions on the unit disk D such that
$\varphi (D) \subset D$
. A weighted composition operator
$uC_{\varphi }$
induced by u and
$\varphi $
is defined on
$A^2_{\alpha }$
, the weighted Bergman space of D, by
$uC_{\varphi }f := u \cdot f \circ \varphi $
for every
$f \in A^2_{\alpha }$
. We obtain sufficient conditions for the compactness of
$uC_{\varphi }$
in terms of function-theoretic properties of u and
$\varphi $
. We also characterize when
$uC_{\varphi }$
on
$A^2_{\alpha }$
is Hilbert–Schmidt. In particular, the characterization is independent of
$\alpha $
when
$\varphi $
is an automorphism of D. Furthermore, we investigate the Hilbert–Schmidt difference of two weighted composition operators on
$A^2_{\alpha }$
.
Publisher
Cambridge University Press (CUP)