Abstract
AbstractLet S be a finite linear space on v ≥ n2 –n points and b = n2+n+1–m lines, m ≧ 0, n ≧ 1, such that at most m points are not on n + 1 lines. If m ≧ 1, except if m = 1 and a unique point on n lines is on no line with two points, then S embeds uniquely in a projective plane of order n or is one exceptional case if n =4. If m ≦ 1 and if v ≧ n2 – 2√n + 3, + 6, the same conclusion holds, except possibly for the uniqueness.1991 Mathematics subject classification (Amer. Math. Soc.) 05 B 05, 51 E 10.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability