On dams of finite capacity

Author:

Takács Lajos

Abstract

We shall consider the following mathematical model of dams of finite capacity. In the time interval (0, ∞) water is flowing into a dam (reservoir). Denote by χ(u) the total quantity of water flowing into the dam in the time interval (0, u). The capacity of the dam is a finite positive number h. If the dam becomes full, the excess water overflows. Denote by δ(u) the total quantity of water demanded in the time interval (0, u). If there is enough water in the reservoir the demand is satisfied, if there is not enough water the difference is supplied from elsewhere Denote by η(t) the content of the dam at time t. η(0) is the initial content.

Publisher

Cambridge University Press (CUP)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lévy Processes and Their Characteristics;Lévy Processes and Their Applications in Reliability and Storage;2013-12-10

2. Takács’ Asymptotic Theorem and Its Applications: A Survey;Acta Applicandae Mathematicae;2008-10-22

3. The work of Lajos Takács on probability theory;Journal of Applied Probability;1994

4. The work of Lajos Takács on probability theory;Journal of Applied Probability;1994

5. Queueing theory;Journal of Soviet Mathematics;1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3