Author:
HUSSAIN MUMTAZ,WANG WEILIANG
Abstract
Abstract
We consider the two-dimensional shrinking target problem in beta dynamical systems (for general
$\beta>1$
) with general errors of approximation. Let
$f, g$
be two positive continuous functions. For any
$x_0,y_0\in [0,1]$
, define the shrinking target set
$$ \begin{align*}E(T_\beta, f,g):=\left\{(x,y)\in [0,1]^2: \begin{array}{@{}ll@{}} \lvert T_{\beta}^{n}x-x_{0}\rvert <e^{-S_nf(x)}\\[1ex] \lvert T_{\beta}^{n}y-y_{0}\rvert < e^{-S_ng(y)} \end{array} \ {\text{for infinitely many}} \ n\in \mathbb N \right\}, \end{align*} $$
where
$S_nf(x)=\sum _{j=0}^{n-1}f(T_\beta ^jx)$
is the Birkhoff sum. We calculate the Hausdorff dimension of this set and prove that it is the solution to some pressure function. This represents the first result of this kind for the higher-dimensional beta dynamical systems.
Funder
Australian Research Council
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献