Abstract
Abstract
We prove that any metric with curvature less than or equal to
$-1$
(in the sense of A. D. Alexandrov) on a closed surface of genus greater than
$1$
is isometric to the induced intrinsic metric on a space-like convex surface in a Lorentzian manifold of dimension
$(2+1)$
with sectional curvature
$-1$
. The proof is by approximation, using a result about isometric immersion of smooth metrics by Labourie and Schlenker.
Publisher
Cambridge University Press (CUP)
Reference16 articles.
1. A Course in Metric Geometry
2. Geometry and Spectra of Compact Riemann Surfaces
3. Surfaces convexes fuchsiennes dans les espaces lorentziens � courbure constante
4. A remark on Mahler’s compactness theorem;Mumford;Proc. Amer. Math. Soc.,1971
5. [15] Slutsky, D. , ‘Métriques polyèdrales sur les bords de variétés hyperboliques convexes et flexibilité des polyèdres hyperboliques’, PhD Thesis, Université Toulouse III Paul Sabatier, 2013.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献