Abstract
AbstractA unified study is undertaken of finitely generated varieties HSP () of distributive lattices with unary operations, extending work of Cornish. The generating algebra () is assusmed to be of the form (P; ∧, ∨, 0, 1, {fμ}), where each fμ is an endomorphism or dual endomorphism of (P; ∧, ∨, 0, 1), and the Priestly dual of this lattice is an ordered semigroup N whose elements act by left multiplication to give the maps dual to the operations fμ. Duality theory is fully developed within this framework, into which fit many varieties arising in algebraic logic. Conditions on N are given for the natural and Priestley dualities for HSP () to be essentially the same, so that, inter alia, coproducts in HSP () are enriched D-coproducts.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Reference38 articles.
1. The determination of subvarieties of certain congruence-distributive varieties
2. [32] Santos R. , ‘Involutive Stone algebras and regular α De Morgan algebras’, manuscript.
3. Coproducts of Kleene algebras
4. Varieties of distributive lattices with unary operations II;Priestley;Portugal Math.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献