Author:
BOBER J. W.,FRETWELL D.,MARTIN G.,WOOLEY T. D.
Abstract
Given $f\in \mathbb{Z}[t]$ of positive degree, we investigate the existence of auxiliary polynomials $g\in \mathbb{Z}[t]$ for which $f(g(t))$ factors as a product of polynomials of small relative degree. One consequence of this work shows that for any quadratic polynomial $f\in \mathbb{Z}[t]$ and any $\unicode[STIX]{x1D700}>0$, there are infinitely many $n\in \mathbb{N}$ for which the largest prime factor of $f(n)$ is no larger than $n^{\unicode[STIX]{x1D700}}$.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献