Author:
FIGUEIREDO G. M.,DE MORAIS FILHO D. C.
Abstract
Using variational methods and depending on a parameter $\unicode[STIX]{x1D706}$ we prove the existence of solutions for the following class of nonlocal boundary value problems of Kirchhoff type defined on an exterior domain $\unicode[STIX]{x1D6FA}\subset \mathbb{R}^{3}$: $$\begin{eqnarray}\left\{\begin{array}{@{}ll@{}}M(\Vert u\Vert ^{2})[-\unicode[STIX]{x1D6E5}u+u]=\unicode[STIX]{x1D706}a(x)g(u)+\unicode[STIX]{x1D6FE}|u|^{4}u\quad & \text{in }\unicode[STIX]{x1D6FA},\\ u=0\quad & \text{on }\unicode[STIX]{x2202}\unicode[STIX]{x1D6FA},\end{array}\right.\end{eqnarray}$$ for the subcritical case ($\unicode[STIX]{x1D6FE}=0$) and also for the critical case ($\unicode[STIX]{x1D6FE}=1$).
Publisher
Cambridge University Press (CUP)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献