Abstract
AbstractLet Λ be a lattice in R3 of determinant 1. Define the homogeneous minium of Λ as mn (Λ) = inf |u1, u2, u3| extended over all points (u1, u2, u3) of Λ other than the origin. It is shown that for any given (c1, c2, c3) in R3 there exists a point (u1, u2, u3) of Λ for which provided that ρσ > 1/64 if mn (Λ) = 0, and ρσ ≥1/16.81 if mn (A) > 0.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献