Abstract
In her book on varieties of groups, Hanna Neumann posed the following problem [13, p. 166]: “Can a variety other than D contain an infinite number of non-isomorphic non-abelian finite simple groups?”The answer to this question does not seem to be known at present. However, in [7], Heineken and Neumann described an algorithm for determining whether or not there are any non-abelian finite simple groups satisfying a given law. They also outlined a way in which their algorithm could be used to show that “only finitely many of the known non-abelian finite simple groups can satisfy a given non-trivial law”; in this paper, we shall follow their suggestions, and prove theTHEOREM. Let g be a set of mutually non-isomorphic non-abelian finite simple groups, each of which is either an alternating group or a group of Lie type, and let g generate a proper subvariety of D. Then y is finite.
Publisher
Cambridge University Press (CUP)
Reference18 articles.
1. The Characterization of Finite Groups with Abelian Sylow 2-Subgroups
2. On a Class of Doubly Transitive Groups
3. Some remarks concerning the Ree groups of type (G2)
4. A property of a representation of a free group;Sanov;Dokl, Akad, Nauk, S.S.S.R. (N.S.),1947
5. The Burnside problem;Kostrikin;Izv. Akad. Nauk S.S.S.R. Ser. Mat.,1959
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献