Author:
Ansley Craig F.,Kohn Robert
Abstract
AbstractThe backfitting algorithm is an iterative procedure for fitting additive models in which, at each step, one component is estimated keeping the other components fixed, the algorithm proceeding component by component and iterating until convergence. Convergence of the algorithm has been studied by Buja, Hastie, and Tibshirani (1989). We give a simple, but more general, geometric proof of the convergence of the backfitting algorithm when the additive components are estimated by penalized least squares. Our treatment covers spline smoothers and structural time series models, and we give a full discussion of the degenerate case. Our proof is based on Halperin's (1962) generalization of von Neumann's alternating projection theorem.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献