SEALING OF THE UNIVERSALLY BAIRE SETS

Author:

SARGSYAN GRIGOR,TRANG NAM

Abstract

AbstractA set of reals is universally Baire if all of its continuous preimages in topological spaces have the Baire property. ${\sf Sealing}$ is a type of generic absoluteness condition introduced by Woodin that asserts in strong terms that the theory of the universally Baire sets cannot be changed by set forcings. The ${\sf Largest\ Suslin\ Axiom}$ ( ${\sf LSA}$ ) is a determinacy axiom isolated by Woodin. It asserts that the largest Suslin cardinal is inaccessible for ordinal definable surjections. Let ${\sf LSA}$ - ${\sf over}$ - ${\sf uB}$ be the statement that in all (set) generic extensions there is a model of $\sf {LSA}$ whose Suslin, co-Suslin sets are the universally Baire sets. We outline the proof that over some mild large cardinal theory, $\sf {Sealing}$ is equiconsistent with $\sf {LSA}$ - $\sf {over}$ - $\sf {uB}$ . In fact, we isolate an exact theory (in the hierarchy of strategy mice) that is equiconsistent with both (see Definition 3.1). As a consequence, we obtain that $\sf {Sealing}$ is weaker than the theory “ $\sf {ZFC}$ + there is a Woodin cardinal which is a limit of Woodin cardinals.” This significantly improves upon the earlier consistency proof of $\sf {Sealing}$ by Woodin. A variation of $\sf {Sealing}$ , called $\sf {Tower \ Sealing}$ , is also shown to be equiconsistent with $\sf {Sealing}$ over the same large cardinal theory. We also outline the proof that if V has a proper class of Woodin cardinals, a strong cardinal, and a generically universally Baire iteration strategy, then $\sf {Sealing}$ holds after collapsing the successor of the least strong cardinal to be countable. This result is complementary to the aforementioned equiconsistency result, where it is shown that $\sf {Sealing}$ holds in a generic extension of a certain minimal universe. This theorem is more general in that no minimal assumption is needed. A corollary of this is that $\sf {LSA}$ - $\sf {over}$ - $\sf {uB}$ is not equivalent to $\sf {Sealing}$ .

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference26 articles.

1. [12] Sargsyan, G. , Descriptive inner model theory, this Journal, vol. 19 (2013), no. 1, pp. 1–55.

2. An Outline of Inner Model Theory

3. [19] Sargsyan, G. and Trang, N. , The largest Suslin axiom, submitted. Available at math.rutgers.edu/~gs481/lsa.pdf.

4. Ordinal Definability and Recursion Theory: The Cabal Seminar, Volume III

5. Iteration trees;Martin;Journal of the American Mathematical Society,1994

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determinacy Axioms and Large Cardinals;Logic and Its Applications;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3