Revealing the Mass Loss Structures of Four Key Massive Binaries Using Optical Spectropolarimetry

Author:

Lomax Jamie R.

Abstract

AbstractThe majority of massive stars are members of binary systems. However, in order to understand their evolutionary pathways, mass and angular momentum loss from these systems needs to be well characterized. Self-consistent explanations for their behavior across many wavelength regimes need to be valid in order to illuminate key evolutionary phases. I present the results of linear spectropolarimetric studies of three key binaries (β Lyrae, V356 Sgr, V444 Cyg, and WR 140) which reveal important geometric information about their circumstellar material. β Lyrae exhibits a repeatable discrepancy between secondary eclipse in the total and polarized light curves that indicates an accretion hot spot has formed on the edge of the disk in the system. The existence of this hot spot and its relationship to bipolar outflows within the system is important in the understanding of mass transfer dynamics in Roche-lobe overflow binaries. Preliminary work on V356 Sgr suggests the system maybe surrounded by a common envelope. V444 Cyg shows evidence that its shock creates a cone with a large opening angle of missing material around the WN star. This suggests the effects of radiative inhibition or braking, can be significant contributors to the location and shape of the shock within colliding wind binaries. The intrinsic polarization component of WR 140 is likely due to the formation of dust within the system near periastron passages. Continued work on these and additional objects will provide new and important constraints on the mass loss structures within binary systems.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3