The AGN-galaxy connection: Low-redshift benchmark & lessons learnt

Author:

Juneau StéphanieORCID

Abstract

AbstractSeveral scenarios have been proposed to describe the physical connection between galaxies and their central active galactic nuclei (AGN). This connection could act on a range of spatial scales and vary across cosmic time. In these proceedings, we consider black hole and galaxy growth and whether that growth is affected by AGN feedback both based on statistical approaches – which reveal general population trends – and based on an individual case study – which gives us a more detailed insight on the physical processes at play. For the statistical approach, we showcase a low-redshift (0.04 < z < 0.2) SDSS sample with AGN classification based on a combination of emission-line diagnostic diagrams, and for which we account for sample selection by using a V/Vmax approach. The trends on the star formation rate - stellar mass (SFRM*) plane suggest that the most likely connection is a common gas reservoir for star formation and AGN, and that they both decline as the gas reservoir is consumed. The trends established at low-redshift could act as a local benchmark against which to compare higher redshift studies. As a complementary approach, we use a detailed case study of a nearby AGN host with integral field spectroscopy from the VLT/MUSE instrument in order to spatially resolve the interplay between AGN feedback and the host galaxy. We find that the galaxy substructure likely plays a role by collimating and/or obscuring the outflows and radiation from the central engine. Ongoing and future work with 3D spectroscopy will enable us to learn more about galaxy and black hole coevolution. Lastly, we briefly discuss lessons learnt from both approaches.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3