Particle acceleration and turbulence transport in heliospheric plasmas

Author:

Vainio Rami

Abstract

AbstractPlasma turbulence at various length scales affects practically all mechanisms proposed to be responsible for particle acceleration in the heliosphere. In this paper, we concentrate on providing a synthesis of some recent efforts to understand particle acceleration in the solar corona and inner heliosphere. Acceleration at coronal and interplanetary shock waves driven by coronal mass ejections (CMEs) is the most viable mechanism for producing large gradual solar energetic particle (SEP) events, whereas particle acceleration in impulsive flares is assumed to be responsible for the generation of smaller impulsive SEP events. Impulsive events show enhanced abundances of3He and heavy ions over the gradual SEP events. Gradual events often show charge states consistent with acceleration of ions in a dilute plasma at 1–2 MK temperature, while impulsive events have higher charge states. The division of SEP events to gradual and impulsive has been challenged by the discovery of events, which show intensity-vs.-time profiles typical for gradual events but, especially at the highest energies (above 10 MeV/nucl), abundances and charge states more typical of impulsive events. Although a direct flare component cannot be ruled out, we find that particle acceleration at quasi-perpendicular shocks in the low corona also offer a plausible explanation for the hybrid events. By carefully modeling shock acceleration and coronal turbulence and its modification by the accelerated particles, a consistent picture of gradual events thus emerges from the shock acceleration hypothesis.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3