Abstract
AbstractThe development of tunable dye lasers and a simple atomic and ionic beam source for all elements were critical in establishing a reliable absolute scale for atomic transition probabilities in the optical to near UV regions. The laboratory astrophysics program at the University of Wisconsin - Madison (UW) concentrates on neutral and singly-ionized species transitions that are observable in astronomical spectra of cool stars, emphasizing the rare earth n(eutron)-capture elements and the Fe-group elements that are important inputs to early Galactic nucleosynthesis studies. The UW program is one of several productive efforts on atomic transition probabilities. These programs generally use time-resolved laser-induced-fluorescence (TR-LIF) to accurately measure total decay rates and data from high resolution Fourier transform spectrometers (FTSs) to determine emission branching fractions (BFs). The UW laboratory results almost always are directly linked to astronomical chemical composition efforts. There are good opportunities to extend similar research to other wavelength regions.
Publisher
Cambridge University Press (CUP)
Subject
Astronomy and Astrophysics,Space and Planetary Science