Cycle-dependent and cycle-independent surface tracers of solar magnetic activity

Author:

Sokoloff D. D.,V. N. ,Obridko ,I. M. ,Livshits ,Shibalova A. S.

Abstract

AbstractWe consider several tracers of magnetic activity that separate cycle-dependent contributions to the background solar magnetic field from those that are independent of the cycle. The main message is that background fields include two relative separate populations. The background fields with a strength up to 100 Mx cm−2 are very poorly correlated with the sunspot numbers and vary little with the phase of the cycle. In contrast, stronger magnetic fields demonstrate pronounced cyclic behaviour. Small-scale solar magnetic fields demonstrate features of fractal intermittent behaviour, which requires quantification. We investigate how the observational estimate of the solar magnetic flux density B depends on resolution D in order to obtain the scaling In BD = −k In D + a in a reasonably wide range. The quantity k demonstrates cyclic variations typical of a solar activity cycle. k depends on the magnetic flux density, i.e. the ratio of the magnetic flux to the area over which the flux is calculated, at a given instant. The quantity a demonstrates some cyclic variation, but it is much weaker than in the case of k. The scaling is typical of fractal structures. The results obtained trace small-scale action in the solar convective zone and its coexistence with the conventional large-scale solar dynamo based on differential rotation and mirror-asymmetric convection. Here we discuss the message for solar dynamo studies hidden in the above results.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3