Masers as probes of supersonic turbulence

Author:

Strelnitski Vladimir

Abstract

AbstractA possible intimate connection between astrophysical masers in regions of star formation and turbulence has been a subject of increasing interest during the last two decades. Evidence for the presence of a residual turbulent component in the observed expansion and rotation of clusters of water masers was shown by multi-epoch VLBI maps. The water maser hot spots demonstrate self-similar (fractal) spatial clustering and a power-law two-point velocity correlation function similar to that of incompressible turbulence – with the power index close to “Kolmogorov's” 1/3. The possibility of using maser sources for studying supersonic turbulence critically depends on whether the observed hot spots are an integral effect of radiative transfer over a large distance, comparable to the size of the whole maser source, or whether they are compact local physical objects, such as small random shocks, in which the mechanical energy of turbulence dissipates. If the latter hypothesis is correct, the compact and bright maser hot spots may be excellent local probes of the spatial and kinematic structure of supersonic turbulence. Observational and theoretical arguments for and against these hypotheses are discussed and the first quantitative results about supersonic turbulence obtained by statistical analysis of maser sources are presented in this review.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turbulence in the interstellar medium;Nonlinear Processes in Geophysics;2014-05-16

2. Observational evidence for the shrinking of bright maser spots;Astronomy & Astrophysics;2010-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3