Multilayered solar interface dynamos: from a Cartesian kinematic dynamo to a spherical dynamic dynamo

Author:

Chan Kit H.,Liao Xinhao,Zhang Keke

Abstract

AbstractThe existence of the solar tachocline, a thin differentially rotating layer at the base of the convection zone which is inferred from helioseismology, leads to the concept of an interface dynamo. The tachocline is magnetically coupled to the radiative interior and the overlying convection zone. A multilayered interface dynamo is required to describe the dynamo process involved. We first discuss a two-dimensional multilayered interface dynamo model in cartesian geometry consisting of four horizontal layers with different magnetic diffusivities magnetically coupled by the three sets of interface matching conditions for the generated magnetic field. Exact solutions of the coupled dynamo system are obtained in this model. We then discuss a fully three-dimensional and multi-layered spherical dynamic interface dynamo using a finite element method based on the three-dimensional tetrahedralization of the whole spherical system. The spherical dynamic interface dynamo also consists of four magnetically coupled zones. In the convection zone, the fully three-dimensional dynamic feedback of Lorentz forces is taken into account. It is shown that the dynamo is characterized by a strong toroidal magnetic field, selects dipolar symmetry and propagates equatorward.

Publisher

Cambridge University Press (CUP)

Subject

Astronomy and Astrophysics,Space and Planetary Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3