Hot and cold running water: understanding evolved star winds
-
Published:2017-09
Issue:S336
Volume:13
Page:347-350
-
ISSN:1743-9213
-
Container-title:Proceedings of the International Astronomical Union
-
language:en
-
Short-container-title:Proc. IAU
Author:
Richards A. M. S.,Gray M. D.,Baudry A.,Humphreys E. M. L.,Etoka S.,Decin L.,Marti-Vidal I.,Sobolev A. M.,Vlemmings W.
Abstract
AbstractOutstanding problems concerning mass-loss from evolved stars include initial wind acceleration and what determines the clumping scale. Reconstructing physical conditions from maser data has been highly uncertain due to the exponential amplification. ALMA and e-MERLIN now provide image cubes for five H2O maser transitions around VY CMa, at spatial resolutions comparable to the size of individual clouds or better, covering excitation states from 204 to 2360 K. We use the model of Gray et al. 2016, to constrain variations of number density and temperature on scales of a few au, an order of magnitude finer than is possible with thermal lines, comparable to individual cloud sizes or locally almost homogeneous regions. We compare results with the models of Decin et al. 2006 and Matsuura et al. 2014 for the circumstellar envelope of VY CMa; in later work this will be extended to other maser sources.
Publisher
Cambridge University Press (CUP)
Subject
Astronomy and Astrophysics,Space and Planetary Science
Reference15 articles.
1. Marti-Vidal I. , Vlemmings W. H. T. , Carozzi T. et al. 2016, https://bulk.cv.nrao.edu/almadata/sciver/VYCMaBand5/VYCMa_Band5_PolCalibrationInformation.pdf
2. Distance to VY Canis Majoris with VERA