Global clustering of recent glacier surges from radar backscatter data, 2017–2022

Author:

Kääb AndreasORCID,Bazilova Varvara,Leclercq Paul Willem,Mannerfelt Erik Schytt,Strozzi TazioORCID

Abstract

AbstractUsing global Sentinel-1 radar backscatter data, we systematically map the locations of glaciers with surge-type activity during 2017–22. Patterns of pronounced increases or decreases in the strongest backscatter between two winter seasons often indicate large changes in glacier crevassing, which we treat here as a sign of surge-type activity. Validations against velocity time series, terminus advances and crevassing found in optical satellite images confirm the robustness of this approach. We find 115 surge-type events globally between 2017 and 2022, around 100 of which on glaciers already know as surge-type. Our data reveal a pronounced spatial clustering in three regions, (i) Karakoram, Pamirs and Western Kunlun Shan (~50 surges), (ii) Svalbard (~25) and (iii) Yukon/Alaska (~9), with only a few other scattered surges elsewhere. This spatial clustering is significantly more pronounced than the overall global clustering of known surge-type glaciers. The 2017–22 clustering may point to climatic forcing of surge initiation.

Funder

Norges Forskningsråd

European Space Agency

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference52 articles.

1. RGI-Consortium (2017) Randolph Glacier Inventory version 6. GLIMS Technical Report. Available at https://nsidc.org/sites/nsidc.org/files/technical-references/RGI_Tech_Report_V6.0.pdf

2. A new inventory of High Mountain Asia surge-type glaciers derived from multiple elevation datasets since the 1970s;Guo;Earth System Science Data Discussions,2022

3. More dynamic than expected: an updated survey of surging glaciers in the Pamir

4. Google Earth Engine: Planetary-scale geospatial analysis for everyone

5. Surge-Type Glaciers in the Tien Shan (Central Asia)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3